36x^2-476x-2464=0

Simple and best practice solution for 36x^2-476x-2464=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 36x^2-476x-2464=0 equation:


Simplifying
36x2 + -476x + -2464 = 0

Reorder the terms:
-2464 + -476x + 36x2 = 0

Solving
-2464 + -476x + 36x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '4'.
4(-616 + -119x + 9x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-616 + -119x + 9x2)' equal to zero and attempt to solve: Simplifying -616 + -119x + 9x2 = 0 Solving -616 + -119x + 9x2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. -68.44444444 + -13.22222222x + x2 = 0 Move the constant term to the right: Add '68.44444444' to each side of the equation. -68.44444444 + -13.22222222x + 68.44444444 + x2 = 0 + 68.44444444 Reorder the terms: -68.44444444 + 68.44444444 + -13.22222222x + x2 = 0 + 68.44444444 Combine like terms: -68.44444444 + 68.44444444 = 0.00000000 0.00000000 + -13.22222222x + x2 = 0 + 68.44444444 -13.22222222x + x2 = 0 + 68.44444444 Combine like terms: 0 + 68.44444444 = 68.44444444 -13.22222222x + x2 = 68.44444444 The x term is -13.22222222x. Take half its coefficient (-6.61111111). Square it (43.70679011) and add it to both sides. Add '43.70679011' to each side of the equation. -13.22222222x + 43.70679011 + x2 = 68.44444444 + 43.70679011 Reorder the terms: 43.70679011 + -13.22222222x + x2 = 68.44444444 + 43.70679011 Combine like terms: 68.44444444 + 43.70679011 = 112.15123455 43.70679011 + -13.22222222x + x2 = 112.15123455 Factor a perfect square on the left side: (x + -6.61111111)(x + -6.61111111) = 112.15123455 Calculate the square root of the right side: 10.590147995 Break this problem into two subproblems by setting (x + -6.61111111) equal to 10.590147995 and -10.590147995.

Subproblem 1

x + -6.61111111 = 10.590147995 Simplifying x + -6.61111111 = 10.590147995 Reorder the terms: -6.61111111 + x = 10.590147995 Solving -6.61111111 + x = 10.590147995 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '6.61111111' to each side of the equation. -6.61111111 + 6.61111111 + x = 10.590147995 + 6.61111111 Combine like terms: -6.61111111 + 6.61111111 = 0.00000000 0.00000000 + x = 10.590147995 + 6.61111111 x = 10.590147995 + 6.61111111 Combine like terms: 10.590147995 + 6.61111111 = 17.201259105 x = 17.201259105 Simplifying x = 17.201259105

Subproblem 2

x + -6.61111111 = -10.590147995 Simplifying x + -6.61111111 = -10.590147995 Reorder the terms: -6.61111111 + x = -10.590147995 Solving -6.61111111 + x = -10.590147995 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '6.61111111' to each side of the equation. -6.61111111 + 6.61111111 + x = -10.590147995 + 6.61111111 Combine like terms: -6.61111111 + 6.61111111 = 0.00000000 0.00000000 + x = -10.590147995 + 6.61111111 x = -10.590147995 + 6.61111111 Combine like terms: -10.590147995 + 6.61111111 = -3.979036885 x = -3.979036885 Simplifying x = -3.979036885

Solution

The solution to the problem is based on the solutions from the subproblems. x = {17.201259105, -3.979036885}

Solution

x = {17.201259105, -3.979036885}

See similar equations:

| 11x+90+6x+5=180 | | 6=3z+2 | | 6x^4+8x^3+4x= | | 5x^2+4x=196 | | 95=80 | | H(x)=x^2-2 | | 7x-3=72 | | -3(-6x)-6=-24 | | (9x+4)-(8x-4)= | | 6x+3ab=7x-8ab | | (14*0.7)+(x*0.3)=13.5 | | (14*0.7)+(x*0.3)=14 | | 3(x+3)=9x+45 | | 0=240a^2b-60ab+105ab^2 | | 19x+15=2x-6 | | 36h+h^2-1296=0 | | ×/5-5=8 | | 3-7/4x9 | | 9=6/y | | -6/w=8 | | 2(x+4)+5=78 | | (23-2x)(15-2x)(x)=0 | | 2k^4=0 | | 0=23(x+y)(4y)(y^2) | | -1/6t4 | | (23-2x)(11.5-2x)(15x)=0 | | 0=23(x+y)(4y)(y) | | 5y+3x-5=8fory | | x^2+y^2-z^2=1 | | 1/5=25/x | | (X^2)-16)/2x)(6/((3x)-(12 | | 2/3b=8/7 |

Equations solver categories